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Introduction

Simulate Cloud Fields?

Why cloud fields simulation?

In Science: Global Circulation Models (GCM), Meteorology,
Instrumentation. . .

In Image Processing: Texture Generation, Animation. . .
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Introduction

Scientific Simulation

Science

In GCM, the pixel size is 100 km × 100 km at least.

To compute the energy budget, we must take into account the
radiative transfer.
We must assigne to the pixel an “effective transfer” value.

We need a subpixel model.
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Introduction

Scientific Animation

Our purpose is to generate “low-cost” realistic cloud fields, both static,
dynamic and illuminated.
The model must be Multi-Scale.
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Introduction

Scientific Animation

Our purpose is to generate “low-cost” realistic cloud fields, both static,
dynamic and illuminated.
The model must be Multi-Scale.

Illuminated Cloud Fields
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Illuminating Cloud Fields
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Illuminating Cloud Fields

Illuminating Cloud Fields

Solving the RTE for illuminating cloud fields:

Mathematical Formulation

Ω.N(r ,Ω) = −σ(r)[N(r ,Ω) − J(r ,Ω)]

N the radiance at r in direction Ω

Ω directional unit at point r

J the source function at r in direction Ω

σ the extinction coefficient at point r

$ the single scatering albedo

B the Plank function at r

P(r ,Ω,Ω
′

) the phase function at r scattering in the direction Ω
from direction Ω

′

+ Boundary Conditions
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Illuminating Cloud Fields

Solving the RTE ?

It is a non linear problem, because the cloud is part of the data
and because of strong inter-scale interactions.

So it is a challenging problem, specially in 3D inhogeneous case.

Analysing the scale interactions may help finding a new way for
illumination.

Multi-resolution analysis is used for solving RTE (Ferlay et al
2005) and to look at those interactions.

It is very costly to solve RTE!
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Illuminating Cloud Fields

Mutiresolution Analysis

Mathematical Formulation

Let ϕk , ψ
ε
j ,k ; j ∈ N∗, k ∈ Z

3, ε ∈ {0, .,7} a MR

ϕ is the scale function

ψε are the mother wavelets

µ, ν connexion’s indices

Analysis of Energy Transfers through Tensor T
Non linearties similar to those of NS Equation
Functions of variable Ω are analysed with Spherical Harmonics (Evans
1998)
Solving RTE using MR is made in Ferlay et al (2005)
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Illuminating Cloud Fields

Mutiresolution Analysis

Mathematical Formulation

ϕ is the scale function

ψε are the mother wavelets

µ, ν connexion’s indices
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k ϕk (r)nk (Ω) +
∑

j ,k ,εψ
ε
j ,k (r)nε
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j ,k ,εψ
ε
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Illuminating Cloud Fields

Fondamental Remark
The set

(j ∈ N∗, k ∈ Z
3)

can be seen geometrically as a

TREE
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From Density Field Generation with tdMAP. . .
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From Density Field Generation with tdMAP. . .

tdMAP: a Density Field Generator

From the Multi-Resolution Analysis of Fractional Brownian Motion
(Benassi 1995, Benassi et al 1997)

Mathematical Formulation

X (x) =
∑

(j ,k)∈Tp
2−jHj,k Fj ,k(2jx − k)ξj ,k with:

X the generated density field; x the spatial position in the d
dimensional domain;

Tp a percolation tree with a p pruning parameter; (j , k) ∈ N × Z
d

gives the location of each node in Tp;

H� the Hurst exponent;

F� the “morphlet” function;

ξ� a family of random values.
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From Density Field Generation with tdMAP. . .

Coding Tree

X (x) =
∑

(j ,k)∈Tp
2−jH�F�(2jx − k)ξ�

2 dimensional domain

The backbone of tdMAP is
a decorated tree;

At each node of the tree
are attached some objects
(H�, F�, and ξ�) and
actions (swelling, shifting,
pruning) that can be freely
set at any scale and spatial
position.
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From Density Field Generation with tdMAP. . .

Configurating tdMAP

In order to configure tdMAP, one can use both observations and
measures.

Photorealistic Textures from Allegorithmic

web address: http://www.allegorithmic.com
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From Density Field Generation with tdMAP. . .

Low-level Clouds Generation

With tdMAP it is possible to build 2D stratocumulus and cumulus cloud
fields with reasonably realistic statistical properties (BENASSI et al.,
2004).

Fractional Coverage Cloud

Optical depth Top radiances
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Low-level Clouds Generation

With tdMAP it is possible to build 2D stratocumulus and cumulus cloud
fields with reasonably realistic statistical properties (BENASSI et al.,
2004).

Fractional Coverage Cloud

Optical depth PDF (ρτ ≈ 1.6) Fourier power spectrum (β ≈ −1.78)
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From Density Field Generation with tdMAP. . .

Morphlet Transform

Mathematical Formulation

F (x) =
∑

ε,j ,k f ε
j ,k∆ε

j ,k(x)

F is the signal (image)

in d dimensions ε ∈ {0,1}d − {1, ..,1}

f ε
j ,k are the morphlets coefficients

∆(x) is a pyramid function supported in [0,1]d

∆ε
j ,k(x) = ∆(2jx − k − ε/2)

Morphlet coefficients are obtained hierarchically from values of F on
2−J

Z
d .

This decomposition gives a hierarchy of “facets”.
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∆(x) is a pyramid function supported in [0,1]d

∆ε
j ,k(x) = ∆(2jx − k − ε/2)

Morphlet coefficients are obtained hierarchically from values of F on
2−J

Z
d .

This decomposition gives a hierarchy of “facets”.
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From Density Field Generation with tdMAP. . .

Mathematical Formulation

Theorem

For β,0 < β < 1, the morphlet decomposition of any F ∈ Hβ(Rd) is
unique.
On every compact, the associated serie of morphlets converges
uniformly to F .
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Morphlet Decomposition: Examples

Lena

Original Details Approximation
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. . . to Vector Field Generation with vtd
−−→

MAP

vtd
−−−→
MAP: a Vector Field Generator

The study of Operator Self-Similar Gaussian Processes with
Stationary Increments (BAHADORAN, BENASSI and DEBICKI, 2004)

Self-Similarity

Law(X (λx) ∈ R
m; x ∈ R

d) = Law(λHX (x) ∈ R
m; x ∈ R

d)

H ∈ Gl(m,R), λ > 0

Wavelet decomposition

X (x) =
∑

ε,j ,k 2jHΦε
j ,k(x)ξε

j ,k

Φε : R
d 7→ Gl(m,R),Φε

j ,k = Φε(2jx − k), ξε
j ,k an iid N(0, Im) RV
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. . . to Vector Field Generation with vtd
−−→

MAP

to vtd
−−−→
MAP

X (x) =
∑

(j ,k)∈Tp
2−jH

�F�(2jx − k)ξ� with:

X the generated medium or vector field; x the spatial position in
the d dimensional domain;

Tp a percolation tree with a p pruning parameter; (j , k) ∈ N × Zd

gives the location of each node in Tp;

H� the Hurst matrix exponent;

F� the “topolet” function with matrix values;

ξ� a family of random vectors.
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. . . to Vector Field Generation with vtd
−−→

MAP

vtd
−−−→
MAP: Main Features

vtd
−−−→
MAP possesses some desired features for a realistic vector field

model:

it can generate self-similar random density or vector fields in any
range of dimensions;

some of these parameters are independantly identifiable on the
base of mathematical proofs (the morphlet transform can be
generalized in a “topolet transform”);

with some amount of work it can provide density or vector fields
with given statistical properties closed to those observed in
atmospheric phenomenons.
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. . . to Vector Field Generation with vtd
−−→

MAP

Sensivity Analysis

X (x) =
∑

(j ,k)∈Tp
2−jH

�F�(2jx − k)ξ�

Diagonal Hurst Matrix Exponent

H =

(

1/3 0
0 1/3

)

H =

(

2/3 0
0 2/3

)
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. . . to Vector Field Generation with vtd
−−→

MAP

Sensivity Analysis

X (x) =
∑

(j ,k)∈Tp
2−jH

�F�(2jx − k)ξ�

Diagonal Hurst Matrix Exponent

H =

(

1/3 0
0 1/3

)

H =

(

α 0
0 α

)

, α ∈]0, 1[
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. . . to Vector Field Generation with vtd
−−→

MAP

Sensivity Analysis

X (x) =
∑

(j ,k)∈Tp
2−jH

�F�(2jx − k)ξ�

Non diagonal Hurst Matrix Exponent

H =

(

α γ
−γ α

)

, α = 1/3, γ ∈ R, λ1 = α + iγ, λ2 = λ1 = α − iγ
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. . . to Vector Field Generation with vtd
−−→

MAP

Sensivity Analysis

X (x) =
∑

(j ,k)∈Tp
2−jH

�F�(2jx − k)ξ�

Topolet
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. . . to Vector Field Generation with vtd
−−→

MAP

Sensivity Analysis

X (x) =
∑

(j ,k)∈Tp
2−jH

�F�(2jx − k)ξ�

Topolet

3D divergence-free topolet
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. . . to Vector Field Generation with vtd
−−→

MAP

Sensivity Analysis

X (x) =
∑

(j ,k)∈Tp
2−jH

�F�(2jx − k)ξ�

2D animation
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Conclusion

The generation of stratocumulus clouds is well developped;

The generation of realistic animations is in progress: a deeper
sensivity analysis should allow to parameterize animations against
real measures.
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Conclusion

For Further Reading
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Method for three-dimensional Athmospheric Radiative Transfer. J.
Athmos. Sci., 55, 429-446.
A.Benassi. Locally Self-Similar Gaussian Processes (Pages
43-54), In Wavelets and Statistics, A.Antoniadis, G.Oppenheim
(Editors). Lecture Notes in Statistics 103, Springer-Verlag 1995.
A.Benassi, S.Jaffard, D.Roux. Elliptics Gaussian Random
Proceses. Rev.Mathzmatica Iberoamericana,13(1):19-90,1997.
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Thermal Radiative Fluxes through Inhomogeneous Clouds Fields/
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